

education

Department:
Education
REPUBLIC OF SOUTH AFRICA

T1220(E)(A8)T APRIL 2010

NATIONAL CERTIFICATE

MATHEMATICS N3

(16030143)

8 April (X-Paper) 09:00 - 12:00

This question paper consists of 6 pages and a 2-page formula sheet.

. . 1.35 (4.5)

7. Differentiation/ Differensiasie

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\frac{d}{dx}\left(x^n\right) = nx^{n-1}$$

Max/Min Maks/Min

For turning points:

Vir draaipunte: f'(x) = 0

8. Trigonometry/Trigonometrie

$$sin\theta = \frac{y}{r} = \frac{1}{cosec\theta}$$

$$\cos\theta = \frac{x}{r} = \frac{1}{\sec\theta}$$

$$tan\theta = \frac{y}{x} = \frac{1}{\cot\theta}$$

$$\sin^2\theta + \cos^2\theta = 1$$

$$I + tan^2\theta = sec^2\theta$$

$$I + \cot^2\theta = \csc^2\theta$$

$$tan\theta = \frac{sin\theta}{cos\theta}$$

$$\cot\theta = \frac{\cos\theta}{\sin\theta}$$

$$\frac{\sin\!A}{a} = \frac{\sin\!B}{b} = \frac{\sin\!C}{c}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

MATHEMATICS N3

FORMULA SHEET

Any applicable formula may also be used.

1. Factors/ Faktore

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

3. Quadratic formula/ Kwadratiese formule

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

4. Parabola/Parabool

$$y = ax^2 + bx + c$$

$$y = \frac{4ac - b^2}{4a}$$
$$x = \frac{-b}{2a}$$

2. Logarithms/ Logaritmes

$$log ab = log a + log b$$

$$\log \frac{a}{h} = \log a - \log b$$

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\log a^m = m \log a$$

$$log_b a = \frac{l}{log_a b}$$

$$log_a a = 1$$
: $ln e = 1$

$$a^{\log_a t} = t$$
: $e^{\ln m} = m$

5. Circle/ Sirkel

6. Straight line/ Reguitlyn

$$x^2 + y^2 = r^2$$

$$D = \frac{x^2}{4h} + h$$

$$x = \sqrt{4Dh - 4h^2}$$

$$y - y_1 = m(x - x_1)$$

Perpendicular:

Loodreg: $m_1 \cdot m_2 = -1$

Parallel lines:

Ewewydige lyne: $m_1 = m_2$

Distance:

Afstand:
$$D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Midpoint:

Middelpunt:
$$P = \left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

Angle of inclination:

Hellingshoek: $\theta = tan^{-1}m$

(1

(1

QUESTION 5

- 5.1 Given the equation: y = asinbx
 - 5.1.1 What does a represent?
 - 5.1.2 What does b represent?
- 5.2 Calculate the values of a that will satisfy the following equation for $0^{\circ} \le a \le 360^{\circ}$ if sec a = 2,5
- 5.3 Make use of basic trigonometric identities to prove that:

$$\frac{1}{1+\sin\beta} + \frac{1}{1-\sin\beta} = 2\sec^2\beta$$

5.4 Simplify the following:

$$\frac{\tan(180^{\circ} - \theta)\cos(360^{\circ} - \theta) + \sin(180^{\circ} + \theta)}{\tan(360^{\circ} - \theta)}$$

5.5 Calculate the exact value without using the calculator:

$$\sqrt{\cos ec^2 150^\circ + \sec^2 315^\circ - \cot^2 150^\circ}$$

Sketch the graphs of the following trigonometric equations each on its system of axes for: $0^{\circ} \le x \le 180^{\circ}$

$$g(x) = 3\sin 2x$$

$$f(x) = 2\cos 4x$$

ALL values at the points of intersection with the system of axes and co-ordinates of the turning points must be shown.

TOTAL:

In the following diagram, points P(4;6) and Q(-2;0) are on a straight line in a 3.4 Cartesian plane.

Calculate the following:

- The co-ordinates of the midpoint of line PQ3.4.1
- The length of line PQ in simple surd form 3.4.2
- The gradient of line PQ 3.4.3
- The equation of line PQ in general form 3.4.4

QUESTION 4

Determine the following: 4.1

$$\lim_{x \to 2} \frac{x^2 - 4x + 4}{x - 2}$$

Differentiate from first principles: 4.2

$$f(x) = 3x^2 + 2$$

Determine $\frac{dy}{dx}$ by using the rules of differentiation: 4.3

$$y = \sqrt{x} - \frac{2}{3x^3}$$
 (Leave the answer with positive exponents and in surd form)

Determine the co-ordinates of the turning point of the following parabola by using 4.4 differentiation: $y = x^2 - 2x - 3$

$$y = x^2 - 2x - 3$$

(3

[2:

2.2 Make R_s the subject of the formula:

$$V = \frac{R}{R_s + r} \times V_{dc}$$

2.3 As
$$f = p\sqrt{1 + \frac{CL}{k^2}}$$
, determine k if $f = 5,188$; $p = 5,12$; $C = 0,003$ and $L = 23$

2.4 Make I the subject of the formula by completing the square:

$$I^2R + VI - P = 0$$

2.5 The square of a natural number is four more than two times another natural number. The second number is two less than three times the first number. Determine the TWO natural numbers algebraically.

QUESTION 3

3.1 State whether the lines represented by the following equations are parallel or perpendicular to each other:

3.1.1
$$y = 2x - 4$$
 and $4y = -2x + 4$

3.1.2
$$2y = 3x + 2$$
 and $4y = 6x$

- 3.2 Given the equation of a parabola: $y = -x^2 + 4x 4$
 - 3.2.1 Determine the y-intercept
 - 3.2.2 Calculate the x-intercepts
 - 3.2.3 Calculate the co-ordinates of the turning point
 - 3.2.4 Sketch the graph represented by the equation $y = -x^2 + 4x 4$
- 3.3 Sketch the graph of $x^2 + y^2 = 4$. Use a scale of 2 cm = 1 unit. Show ALL values at the points of intersection with system of axes. Name the type of graph.

(2)

(2)

(3)

(4) [23]

QUESTION 1

Fully factorise the following in prime factors:

1.1.1
$$4x^2 - (x+1)^2$$
 (1)

1.1.2
$$2x^2 + 5x + 3$$

$$1.1.3 2x^3 + 5x + 8x^2 + 20 (2)$$

1.2 Simplify the following without using the calculator:

1.2.1
$$2\log_3 2 + \log_3 10 - \log_3 3 - \log_3 40$$

$$\frac{\sqrt{24} - 2\sqrt{6} + \sqrt{54}}{\sqrt{96} - \sqrt{6}}$$

$$\frac{3 \times 2^{x} - 4 \times 2^{x-2}}{2^{x} - 2^{x-1}} \tag{3}$$

1.3 Prove that x-2 is a factor of the following function by making use of the factor theorem:

$$f(x) = x^3 + 2x^2 - 5x - 6 \tag{3}$$

1.4 Simplify the following fractions:

$$\frac{x^2 + x - 2}{3x + 6} \div \frac{x + 2}{x^2 + 3x + 2} \tag{3}$$

1.4.2
$$\frac{14}{x-3} + \frac{5}{2+x} - \frac{9x-5}{x^2-x-6}$$

QUESTION 2

2.1 Solve for x:

$$2.1.1 \qquad \sqrt{-3x-5} - 5 = x \tag{3}$$

$$2.1.2 log_x 25 + log_2 8 - log_5 5 = 4 (3)$$

$$2^{x+2} + \frac{2^x}{4} + 2^x = 42 {4}$$

DEPARTMENT OF EDUCATION REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE MATHEMATICS N3 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- Number the answers correctly according to the numbering system used in this
 question paper.
- 4. Show ALL the calculations and intermediary steps. Simplify where possible.
- Questions may be answered in any sequence, but subsections of questions may NOT be separated.
- ALL the answers must be approximated accurately to THREE decimal places.
- 7. 1 mark = 1%
- 8. NOTE: Diagrams are not drawn to scale.
- The formula sheets (attached) are not necessarily complete. Any other applicable formula may be used.
- 10. Write neatly and legibly.